Louis Avon
Office of the District Attorney
2700 Tulane Avenue
New Orleans, Louisiana 70119

Dear Mir. Ivons
It has been suggested that the backwards motion of the President's head in the frames of the Zapruder film immediately following 313 was due to an acceleration of the automobile. The Warren Commission, to the best of my knowledge, never examined the Zapruder film to determine whether there was such an acceleration. My own hasty measurements, done some time ago, convince me that there was no acceleration around frame 313. (Notes and graphs enclosed.) I believe that you could show conclusively that the postulated explanation is not valid. If there will be further testimony on this matter, I would suggest that you show the enclosed material to Dr. Nichols or one of your other experts. The measurements can be easily repeated in a few minutes.

Incidentally, Shaneyfelt reportedly noted the forward motion of matter from the President's head in frame 313, and concluded that the shot had come from the rear. This is utter nonsense. It is clear that matter was driven upward as well as forward, but this certainly does not mean that Kennedy was shot from below.

Sincerely yours,


Paul. L. Foch

Three independent observations indicate that the President's car slowed down significantly a second or so before the fatal shot.

Several frames from the FBI reenactinent of the assassination are reproduced in Volune XVIII. The figures given for "Distance to Station $C$ " in themselves suggest that the car slowed down, since the average speed is noticeably less for frames 255-313 than for earlier frames. (See Figure I.)

From a study of the film taken by Orville Nix, the Itek Corporation concluded that the car traveled at an average of 8.7 mph in the vicinity of the fatal shot. This is considerably less than the overall average of 11.2 mph for frames 161-313. (See Figure I.)

As suggested by Dr. Alvarez, the angular position of the car relative to various points in the background has been measured for frames 261-334. These measurements strongly suggest a decrease in velocity approximately in the middle of this interval, of roughly the same size as that indicated by the above two items. (See Table I and Figure II.)

## DETAIIS:

Figure I:
The FBI reenactment points are from CE 888-902, or equivalently CE 884 . The dashed line is a fit through the first and last FBI points, corresponding to the average speed of 11.2 mph used by the Warren Cormission (WR 49, 5H161). The solid line is an eyeballed best fit to all the FBI points except the last one. It fits these points quite well (corresponding to a speed of 12.0 mph ) but is about 7 feet offis when extrapolated to frame 313. This alone suggests a deceleration after frame 255.

The Itek points are from "Nix Film Analysis, " a report by the Itek Corporation, Lexington, Mass. 02173, May 18, 1967, pp. 12, 45-46. Itek's values for the distance moved by the car along the centerline per 4 frames of the Nix film are plotied, normalized to the position at frame 313. Nix frame 24, which corresponds to Zapruder frame 313 ( 5 H143), is called $C 3$ or 64 by Itek; I have assumed the latter. I have neglected the slight difference in camera speeds. (The FBI gave 18.3 fps for Zapruder, 18.5 fps for Nix ( 5 H 160 ).) Using 18 fps, Itek found speeds which average 9.6 mph in frames $A 2-B 8$ (291-307) and 7.6 mph in frames B8-D (307-319) (Itek report, p. 46 ). Itek claims that, given the experimental errors, the deviations from the average of 8.7 mph are consistent with a "nearly uniforn" speed. They are also consistent with a.deceleration in the vicinity of frames $290-310$, as is the data in Figure II. Table I and Figure II:
"XY" means the horizontal distance from $X$ to $Y$, on the prints in $C E$ 885. The first column is the frame number; the second is the distance in mm; the third gives the normalized distance (in units of 0.1 man ), as plotted in Figure II. (The 7 overlapping sets of data are normalized at the 6 indicated frames.)

No attempt has been made to correct for the canera optics, or for the fact that the car's motion is only nearly perpendicular to the line of sight. Although the individual measurements are quite crude ( 10.5 mm ), Figure II does seem to conifirm the deceleration indicated in Figure I.

From Table I, the (angular) velocity of the car in frames 291-334 is about. 82\% of that in frames 261-291. From Figure I, the speed in frames 291-319 is about $75 \%$ of that in frames 161-255. I feel that these numbers are quite consistent.

Paul L. Hoch



IABLE $\perp$


