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ABSTRACT 

A method of identifying latent taxa employing only a single indicato
r- 

-variable but relying on the idealization of intra-taxon distributio
n 

normality was applied to real data, consisting of the Masculinity-

-femininity scores (MMPI Scale 5) of 665 females and 410 males. Mak
ing 

arbitrary cut-and-try assignments of the six latent distribution par
a- 

meters Rm, xm, am, Ne  7f, of  (the first 3 determining the last three via 

observational constraints), normal curve tables were entered to gene
rate 

"theoretical" interval frequencies for the manifest (mixed-taxon) 

distribution, and chi-square tests for badness-of-fit were done on e
ach 

of the 120 combinations of parameter-assignments. Choosing the best
-

-fitting combination as estimators, these inferred values of the tax
on 

base-rates and means were as close to the true values as scale coars
eness 

permitted, but the estimated sigmas were in error by around one-fift
h of 

their true values. Since both latent taxa violated the normality as
sumption 

(skew and leptokurtic), the successful outcome suggests satisfactory
 

robustness. Results of this pilot study are considered sufficiently
 

encouraging to justify (a) Monte Carlo and (b) further real-data tes
ts 

of the method. 



Identifying Latent Clinical Taxa, III: 

An Empirical Trial of the Normal Single-Indicator 

Method, Using MMPI Scale 5 to Identify the Sexes 

P. E. Meehl, D. T. Lykken, M. R. Burdick, and G. R. Schoener 

In a previous contribution to this Research Report series (Meehi 

1968, Section 3, pages 47-54) a method was proposed for identifying the 

presence of a latent taxonomic situation (dichotomous case) when 

only a single fallible indicator-variable is available, as contrasted 

with the (much preferable) situation in which a family of three or 

more construct-valid indicators are known to discriminate, which was 

the psychometric situation mainly emphasized in previous contributions 

(Meehl 1965, Meehl 1968; but see also Dawes and Meehi 1966). The 	. 

mathematical rationale will not be repeated here, for which the reader 

is referred to the earlier report at the cited locus. Suffice it to 

say here that whereas the multiple-indicator methods make only weak 

assumptions about the distribution shapes for single indicators of the 

indicator-family, the present one-indicator technique relies upon an 

approximative assumption of intra-taxon normality, i.e., we assume that 

within each of the two'latent taxa being sought for, the indicator 

in use is, while not precisely normal, sufficiently close to normal 

that the method can be used without gross distortion of the undei.'lying 

reality. 

The reader is referred to equations [99]4103] of PR-68-4 (page 

51 of Meehl 1968) which set up the simple algebra of the situation. 
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One first assigns arbitrary base-frequency for one of the taxa. 

determines the base-frequency for the other taxon. Holding these 

values fixed, one assigns an arbitrary mean to one of the taxa, which 

assignment, given the base-frequency values presupposed in the preceding 

step, determines the mean of the other taxon. Finally one assigns an 

arbitrary standard deviation to one of the taxa, which assignment, 

given the preceding assignments (and implied values) of the frequencies 

and means, determines the standard deviation of the other taxon. So 

that the arbitrary assignment of a base-frequency, a mean, and a 

sigma to one taxon determines the corresponding values for the other 

taxon. These consequences are algebraic identities and do not depend 

upon the normality assumptions. However, to generate an expected mani-

fest-distribution frequency from any of the various combinations of 

latent assignments that thus arise, some assumption regarding distribution 

form must be made. If we make the normality assumption within taxa, 

each triad of arbitrary values (Ns, is, as) determines expected 

frequencies in class-intervals of the latent frequency function for 

the first postulated taxon; and in the same way the other taxon's 

parameter values (Nn, 'in, an) that are determined algebraically by 

the first taxon's parameter values will generate a set of expected 

frequencies for each class interval of the latent frequency function 

for the secmo taxon. When these two latent frequency functions; 

flowing necessarily from the arbitrary parameter assignments (together 

with the normAlity postulate) are superimposed, we thereby generate 

an expected distribution of manifest frequencies (mixed taxa). That 
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set of theoretically calculated frequencies is then compared with the 

observed, the discrepancy measured by chi-square as usual, and the 

chi-square value recorded as one point on a curve of theory-observation 

discrepancies. The entire process is then repeated, first for 

differing values of sigma (holding the frequencies and means fixed), 

then for the same range of values of sigma (holding fixed a different 

pair of means and taxon-rates); and, finally, running through the 

same set of sigmas and the same set of means but with another 

arbitrary set of frequencies. We thus generate a family of curve-

-families of chi-squares representing observation-theory discrepancies, 

and we assume that the minimum chi-square --- hopefully a statistically 

nonsignificant one --- corresponds to the underlying latent taxon 

situation. 

Pending a large-scale Monte Carlo investigation of the sampling 

characteristics of the method, it was thought worthwhile to try it 

out on some real data in which we would pretend not to know which 

patients belonged to each latent taxon, what the latent means and 

sigmas were, or even what the relative proportions of the two latent 

taxa were, to see whether the method would give us anything like the 

right answers. It is not easy to locate a true taxonomy in the 

area of psychometrics, but one of the good ones, both because it 

does yield a genuine bimodality in personality scores and because it 

is completely objective on the criterion side, is biological sex. 

We therefore applied the method to the pseudo-problem of identifying 

the male-female taxonomy, using the MMPI masculinity-femininity scale 
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as our single indicator-variable (Scale 5). The raw data were computer 

print-outs of the Mf  scores of 410 males and 665 females which had 

previously been drawn randomly for another purpose from the University 

of Minnesota Hospital "General Psychiatric Population." The statistical 

characteristics of this pair of latent taxa on MMPI Scale 5 are shown 

in Table 1. 

Table 1 

The Values of the Sample Statistics for Each Taxon 

N Base-Rates 7 S.D. 

Males 410 P = .38 24.73 5.75 

Females 665 Q = .62 36.04 5.66 

Total 1075 1.00 31.72 7.92 

For this pilot study it was thought sufficient to try postulated 

frequencies for the male taxon ranging from 100 (base rate P = .09) 

to 500 (base rate P = .46) proceeding by 100-case increments; that 

is, the hypothesized male frequencies tried against observation were 

100, 200, 300, 400, and 500, corresponding to hypothesized male 

base-rates of .09, .19, .28, .37, and .46 respectively. 

Given the observed grand (mixed taxon) mean of i-et  = 31.73, and 

the observed grand (mixed taxon) standard deviation of 7.92, "safe" 

or "plausible" values of the hypothesized latent mean for the males 

were considered to run from around 15 (raw score) on MMPI Scale 5 

to around double that value at 3% = 30, and the variation in cut-and-try 

mean values for the males was run by five-unit steps; that is, we tried 
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out latent taxon means of the males at the four values Tin  = 

xm  = 20, 7171  = 25, and xm  = 30. 

Given the grand observed (mixed-taxon) sigma of 7.92, arbitrary 

cut-and-try values of the male taxon standard deviation were run from 

a low of 3 and proceeding by unit steps at 4, 5, 6 and 7 thru 8. 

From this logical tree of arbitrary values assigned to each of 

the three latent parameters, there follow, on the intra-taxon 

normality assumption, a set of 120 combinations (i.e., 5 arbitrary 

base rates x 4 arbitrary means x 6 arbitrary sigmas). This would 

mean a comparison of the observed (mixed-taxon) frequency distributions 

with each of the 120 cut-and-try distributions and the plotting of 

120 chi-squares to identify the best fit. .Actually not all of these 

chi-squares, and not even all of the curves within a curve-family, 

had to be computed and plotted, because some of the arbitrary para-

meter assignments generated negative variances for the second 

[actually female] taxon. The appearance of these negative variances 

caused us (foolishly) to double check for possible computational 

error. There was no need to assume error on the usual grounds of 

the algebraic impossibility of a negative variance when a sum of 

squares of deviations ftom a mean is directly computed. When a 

variance is estimated by a combination of an observed dispersion and 

an arbitrary latent taxon value, as in the present procedure, a 

negative estimated variance can easily arise from sufficiently 

extreme [i.e., grossly erroneous] arbitrary assignments of the 

variance (together with the base-rate and mean of one taxon). The 
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correct inference from the appearance of a negative variance is 

course, simply that these particular latent values are precluded by 

our empirical data, which is what we are investigating! 

In calculating the observational distribution from the postulated 

latent values, from 35 to 52 intervals of unit width (integer 

increments)on the Mf(raw score) variable were employed, avoiding 

grouping coarseness problems. This amounts to intervals of width 

approximately .13 sigma on the manifest distribution, and approximately 

.18 sigma on each of the two latent taxon distributions. Calculated 

latent frequencies within a class interval were rounded off to the 

nearest integer, combining intervals at tails whenever the expected 

values were less than one (Cochran 1954). 

In Table 2 are shown the chi-square values and chi-square normal 

deviates indicating the discrepancy between the observed grand (mixed- 

-taxon) distribution and the 120 theoretically calculated distributions 

generated by the various sets of arbitrary latent parameter values for 

the base-rates, means, and sigmas. Note that the lowest arbitrary 

mean value tried for males (oi = 15) gives rise to impossibly negative 

estimated variances for the other latent taxon at 4 of the 5 arbitrary 

base-rates. 

The raw Mf sc
ores on the manifest (mixed-taxon) frequency 

distribution ran from raw score = 9 through raw score = 49 inclusive 

(corresponding to T-scores from 106 to 28 for males, and from 24 to 

95 for females, respectively), requiring a total of 41 ungrouped 

class-intervals to cover the empirically observed range. The 
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Table 2 

The Chi-square Values and Chi-square normal deviates 

for Each of the 120 sets of Arbitrary Latent Values 

hm = 100 

Intervals 	Degrees of 
.111 	am 	Range Number 	Freedom (n) X

2 4277\41-1.7--  

15 3 8 - 51 44 41 172 9.55 <.01 

4 6 - 51 45 42 157 8.61 <.01 

5 4 - 51 48 45 152 8.01 <.01 

6 2 - 51 50 47 155 7.97 <.01 

7 0 - 51 52 49 169 8.53 <.01 

8 0 - 50 51 48 224 11.42 <.01 

20 3 11 - 54 44 41 80 3.32 <.01 

4 10 - 54 45 42 73 2.97 <.01 

5 8 - 54 47 44 72 2.67 <.01 

6 7 - 54 48 45 76 2.90 <.01 

7 5 - 54 50 47 85 3.40 <.01 

8 4 - 52 49 46 96 4.32 <.01 

25 3 10 - 54 45 42 140 7.62 <.01 

4 10 - 54 45 42 130 7.01 <.01 

5 10 - 54 45 42 117 6.19 <.01 

6 10 - 54 45 42 105 5.38 <.01 

7 10 - 54 45 42 100 5.03 <.01 

8 9 - 54 46 43 96 4.64 <.01 

30 3 8 - 56 49 46 138 7.07 <.01 

4 8 - 56 49 46 125 6.27 <.01 

5 8 - 56 49 46 113 5.49 <.01 

6 8 - 56 49 46 107 5.09 <.01 

7 10 - 54 45 42 107 5.52 <.01 

8 10 - 54 45 42 98 4.89 <.01 



Table 2 (Cont) 

N
m = 200 

Xm  
Intervals 	Degrees of 

am 	Range Number 	Freedom (n) X2  J2X2  

15 3 

4 

5 Impossible 
6 as of  < 0 

7 

8 

20 3 12 - 51 	40 37 66 2.95 <.01 

4 10 - 51 	42 39 45 0.71 .24* 

5 7 - 51 	45 42 52 1.09 .14* 

6 5 - 51 	47 44 77 3.08 <.01 

7 3 - 49 	47 44 123 6.35 <.01 

8 1 - 48 	48 45 272 13.89 <.01 

25 3 11 - 55 	45 42 192 10.49 <.01 

4 11 - 55 	45 42 149 8.15 <.01 

5 11 - 55 	45 42 124 6.64 <.01 

6 12 - 55 44 41 105 5.49 <.01 

7 7 - 54 	48 45 90 3.99 <.01 

8 6 - 54 	49 46 89 3.80 <.01 

30 3 8 - 56 	49 46 186 9.75 <.01 

4 8 - 56 	49 46 163 8.52 <.01 

5 8 - 56 	49 .46 133 6.77 <.01 

6 8 - 56 	49 46 116 5.69 <.01 

7 7 - 56 	50 47 108 5.06 <.01 

8 10 - 54 -45 42 101 5.10 <.01 
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Table 2 (Cont) 

N
m 
= 300 

15 

°m 

3 

4 

5 

6 

7 

8 

Intervals 
Ra

Xm 	
nge Range 	Number 

Degrees of 
Freedom (n) 

2 
x 42)(4 	- ‘25-7171-  

20 3 11 - 45 35 32 1053 37.9 

4 9 - 43 35 32 1217 41.4 

5 7 - 42 36 33 2045 56.0 

6 

7 

8 

25 3 12 - 56 44 41 280 14.7 

4 12 - 56 44 41 188 10.4 

5 11 -55 44 41 131 7.19 

6 9 - 55 , 45 43 104 5.20 

7 7 - 53 47 44 76 3.00 

8 5 - 52 48 45 70 2.40 

30 3 6 - 58 53 50 267 13.2 

4 6 - 58 53 50 203 10.2 

5 8 - 56 49 46 163 8.52 

6 8 - 56 49 46 136 6.85 

7 8 - 56 49 46 108 5.16 

8 10 - 54- 45 42 102 5.17 

}

Impossible 
2 

as af  < 0 

<.01 

<.01 

<.01 

Impossibl% 

as a
f 
 <0 

<.01 

<.01 

<.01 

<.01 

<.01 

<.01 

<.01 

<.01 

<.01 

<.01 

<.01 

<.01 
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Table 2 (Cont) 

Nm  = 400 

Intervals 	Degrees of 
Range 	Number 	Freedom (n) X2  2X2  Air7.71-  

15 

20 

25 

CLOSEST Tda 
TRUE VALUE -* 

30 

3 

4 

5 

6 

7 

/O. 

Impossibl 

8 of < 0 

3 

4 

5 

6 

7 

8 •■■•• 

3 16 - 56 41 38 318 16.6 <.01 

4 14 - 55 42 39 196 11.0 <.01 

5 11 - 55 45 42 118 6.25 <.01 

6 9 - 53' 45 42 72 2.89 <.01 

7 6 - 51 46 43 .40 -.28 .61** 

8 4 - 48 45 42 70 2.72 <.01 

3 5 - 61 57 54 380 17.42 <.01 

4 7 - 59 53 50 268 13.65 <.01 

5 7 - 59 53 50 198 9.95 <.01 

6 9 - 57 49 46 152 7.90 <.01 

7 8 - 57 50 47 112 5.34 <.01 

8 9 - 55 47 44 99 4.74 <.01 

**Best fit in 120 trial values 10 



Impossib 
2 

as of 
< 

20.8 <.01 

11.4 <.01 

3.42 <.01 

3.00 <.01 

42.3 <.01 

Impossibl 

21.7 <.01 

15.9 <.01 

14.4 <.01 

11.0 <.01 

5.49 <.01 

5.09 <.01 

Table 2 (Cont) 

N
m 
= 500 

xm am  

Intervals 
Range 	Number 

Degrees of 
Freedom (n) 

2  
X 

15 3 

4 

5 

6 

7 

8 

20 3 

4 

5 

6 

7 

8 

25 3 16 - 55 40 37 440 

4 14 - 54 41 38 203 

5 11 - 51 41 38 73 

6 8 - 48 41 38 68 

7 5 - 41 37 34 1269 

8 

30 3 6 - 60 55 52 508 

4 6 - 60 55 52 340 

5 5 - 55 51 48 292 

6 5-55  51 48 216 

7 8 - 57 50 47 113 

8 9 - 55 47 44 104 
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arbitrary parameter assignment method of course gives rise to non-zero 

"theoretical" values for class-intervals outside the empirical range 

of scores, and in other cases predicts near-zero frequencies for 

intervals that are actually occupied. Hence many of the chi-squares 

are based upon more than the 38 [ = 41 - 3 ] degrees of freedom that 

would be involved in testing significance with 41 class intervals, 

and some are based on fewer d.f. than this. Consequently the degrees 

of freedom varied considerably from one goodness-Of-fit test to 

another, rendering the obtained chi-square values not directly 

comparable without taking the varying degrees of freedom into account. 

Although we plotted and inspected the graphs of the raw chi-square 

values themselves, what is of proper interest for purposes of 

estimating the true values of the best-fitting hexad of arbitrary 

parameters is the function 
2 -4' -- lAn - 1 ) 

treatable as a normal deviate with unit variance for d.f. > 30. 

Table 2 shows the interval ranges, number of intervals, degrees of 

freedom, chi-square value, the associated value of the chi-square 

deviate ,1„1:/;; / 	 , and the P-value 
v X-. 

from normal curve tables. In the case of chi-square, of course, 

the proper P-value to'use is the integral under the normal function 

from the given chi-square deviate upward, since probabilities 

associated with negative values of the normal chi-square deviate 

(as in the best-fitting combination Nm  = 400, xm  = 25, am  = 7, 

where the deviate is at z = -.28) are greater than 1/2, i.e., this 

assignment of parameters fits the empirical distribution better than 
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one might expect on the average to fit it through random sampling 

fluctuations alone. 

The chi-square deviate values in Table 2 are plotted as curve-

-families in Figures 1 through 5. Each figure represents a family of 

curves associated with one of the five arbitrary assignments of the 

base-rate Nm. Each curve within the family represented by a given 

figure shows the dependency of the chi-square deviate upon sigma 

assignment, given a fixed assignment of the latent mean xm. And 

each plotted point on a given curve within a family represents the 

chi-square deviate value obtained for an abscissa value of the 

indicated sigma, given the arbitrary mean generating the curve on 

which the point is found, and the arbitrary base-rate generating the 

family of curves represented in the figure. So each point on one of 

these graphs indicates a chi-square deviate, corrected for the 

variable degrees of freedom on which it was based, and reflecting 

the theoretical-observed discrepancies yielded by the particular 

arbitrary parameter combination which gave rise to it. As the curves 

rise, they reflect increasingly unsatisfactory parametric assumptions 

about the latent situation. Thus, in Figure 1 the top curve shows 

the set of 6 chi-square deviates generated by arbitrary assignments 

of a = 3, 4 ...8 to the one latent taxon, when the arbitrary mean 

assigned to that taxon is 15, given the fixed arbitrary base-rate 

for that taxon arbitrarily assigned at Nm  = 100. The four curves 

in Figure 1 show the dependence of the goodness-of-fit upon the six 

arbitrary standard deviation assignments, for each of the four 
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arbitrary mean assignments; holding fixed an arbitrary base-rate 

assignment of 100' TThe other four figures are to be interpreted the 

same way. 

Before considering the question of how well the minimum of 

minima of minima among all these curves succeeds in spotting the true 

latent values, certain general observations on the way the curve 

families behave are of some interest. The figure whose hypothetical 

base-rate is closest to the true one is of course Figure 4, with 

the first [=male] taxon being arbitrarily assigned a base rate of 

Nm = 400, which with 100-unit steps is as close as we can come to the 

true value of the number of males in this sample (Nm  = 410). We 

note that this graph, and the graph based upon the next closest 

available base-rate assignment (Nm  = 500, Figure 5) both exhibit a 

considerably greater "steepness" or "peakedness" than is true of the 

curves in Figures 1, 2, and 3. The "flattest" curves, in which the 

variation in arbitrary assignments of sigma values seems to make the 

least difference in the goodness-of-fit to the observed data, we see 

in the most far-out erroneous base rate value, at Nm  = 100. Quaere, 

whether it is for some reason a general principle in this procedure, 

that a "good" estimate of base-rate is necessary in order for good-to-

-bad variations of the within-taxon parameter guesses to generate 

appreciable variation in goodness-of-fit to the observations. 

In Figure 2, where the lowest arbitrary mean assignment (iiiM = 15) 

is not plottable because it results in an impossible negative variance 

for the female taxon, there seems to be something aberrated about the 
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curve reflecting the first algebraically possible value of the arbitrary 

mean of -; = 20, in the sense that this curve cuts diametrically 
across the other two instead of running roughly parallel to them, as 

the curves in the other figures do. 

The smallest chi-square deviate obtained (lowest empirical 

"badness-of-fit" point on any curve in any curve-family) is found in 

Figure 4, which corresponds to a postulated latent (male) taxon 

frequency of 400, (base-rate .37) the true value being 410 (base-rate .38); 

a postulated latent mean of 7cM = 25, the true value being 24.73; and 

an assigned latent sigma of 7 (the true value being am  = 5.75). So we 

do identify the correct curve-family, and the correct curve within the 

family, the estimated values being very close to the true ones; but we 

make an error of more than one raw-score unit in estimating the latent 

sigma, not attributable to scale coarseness, since the nearest rounded-

-off integral value to the true male sigma should be at 6 on the 

abscissa, instead of at 7. It does not seem possible to say, upon 

contemplating this series of five figures, to what extent the error 

in sigma-assignment is attributable to the coarseness of the 

discontinuous intervals or to the fact that the intrataxon normality 

assumption is an idealization. 

Fisher's 2.-statistics were calculated on the latent distributions 

of males and females, and (as was expected from previous work on the 

M
f 
scale) each of them differed significantly from normal curve form 

(p < .001, as to both skewness and kurtosis, and for both sexes). 

The male frequency function was considerably skewed to the right, the 

female to the left, and both curves were quite markedly leptOkurtic. 

The accurate estimate of base-rates and latent means, in spite of 

II 
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these sizeable departures from the normal-curve idealization, speaks, - 

encouragingly for the method's robustness. 

It would be gratifying to find that the true or truest parameter 

assignments yielded a nonsignificant P-value for chi-square and all 

others a significant one, but this is not the case. One-tailed 

probability P < .05 (obviously "super-fit" chi-squares are of no 

interest here) corresponds to a deviate z = 1.65, the dotted reference 

line shown in each figure, and parameter estimates providing a 

"satisfactory fit" (P > .05, z < 1.65) occur three times (in 120 trials) 

as seen in Figures 2 and 4. The arbitrary values yielding these good 

fits are indicated by an asterisk in Table 2. Note that the only 

assignment yielding a fit "better than chance expectation" --- slightly 

below the expected chi-square deviate --- is the am  = 7 value in 

Figure 4, i.e., the closest possible assignment of Nm  and iin  to the 

true values. This is gratifying, but it must be admitted that the 

(badly-off) assignments in Figure 2 are uncomfortably "good"-looking 

and do not reach the 5% level either. 

With steps of this coarseness, an investigator starting "blind" 

in search of the latent taxa, relying on a single indicator, and with 

no antecedent information as to the true base-rates, means or sigmas, 

would in this study have concluded that the one taxon had a base-rate 

of approximately 400, a mean of approximately 25, and a standard 

deviation of approximately 7. But while this is the best value, he 

would perhaps feel somewhat nervous about the too-close competitors at 

Nm 
= 200. It remains true that a "blind, mechanical" choice based 

on the best-fitting values would have succeeded on these data. If a 
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satisfactory general criterion can be set up for excluding graphically 

aberrant curves like the one found in Figure 2, the present results 

would indicate that the method has considerable promise. It would seem 

that some kind of combined criterion of greater steepness or peakedness 

and reasonable parallelism within the curve-family should suffice to 

exclude the dangerously- low chi-squares found in Figure 2, which 

assigns a seriously erroneous base-rate to the male taxon. 

It turned out that the desk-calculator computations involved in 

this pilot study were far more onerous than had been initially 

anticipated. This fact, combined with the desirability of operating 

with finer steps plotting the curves (which with a logical tree of 

the present kind results in a inordinate increase in the necessary 

computations) led us to conclude that further work on the method with 

real data should await development of a computer program, as well as 

investigation of sampling stability problems by Monte Carlo methods. 

The present study is being reported as yielding moderate-to-strong 

suggestion that the proposed method has sufficient promise to justify 

more thorough study. 
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