Radar to Hunt Treasure in a Pyramid

By WALTER SULLIVAN

Special to The New York Tymes
WASHINGTON, April 22
A new effort to locate à treas-ure-laden burial vault within or under the gigantic Khefren pyramid is being undertaken by the Stanford Research Institute, using a rock-penêtrating radar.

The effort follows an eight year attempt to probe the monument through observations of cosmic rays penetrating its mas sive limestone blocks from all parts of the sky. Had there been a cavity, it was assumed, it would have shown up as a "bright spot" in which fewer of the rays had been absorbed than those arriving from other directions.
However, LDr Iuis W, Alvar ez.) Nobel laureate in physics from the University of California at Berkeley, who conducted the search in collaboration with Egyptian scientists, said that continued efforts to probe all corners of the pyramid had revealed no such chamber.
The Khefren pyramid is one of the three famous pyramids ot Giza, about three miles southwest of Cairo.

Gold and Cosmic Rays

It is conceivable Dr. Alvarez said, that a chamber exists so crammed with gold that it absorbs as many cosmic rays as the solid limestone. If so, he told a press briefing this noon, the gold would produce an "enormous signal" in the Stanford radar. The latter, he added, will also be able to look beneath the pyramid where the cosmic ray experiment was blind.
The Stanford Research Institute of Palo Alto, Calif., will continue under the same arrangement with the Egyptian ciety is holding its spring meetauthorities, which made possi-ling here this week with most
ble the cosmic ray observations, of its sessions at the Sheraton Dr. Alvarez said. Observations Park Hotel. At the same time, should begin within few the Optical Society of America weeks, using short-wave radio is meeting at the nearby Shoreemissions, a few meters in ham hotel.
length, that should penetrate a At the latter session Dr. few hundred feet below the Maurice Françon of the Inpyramid. \quad stitute of Optics at the UniThey will also be directed versity of Paris told of a upward from the chamber un- powerful new way of measurder the pyramid from which ing the angular width of stars. the cosmic ray observations Even the nearest stars are too were made. While this may have distant for the width of their been the burial chamber, the images to be measured directly.

The angular width of several stars was obtained 40 years ago by bringing together separate beams of light from each star so that the light waves could interfere with one another, a process known as interferometry.

This process was applicable only for the nearest, brightest stars. In the new method, the star is photographed rapidly through a filter that permits passage of only one wave length.

The result is a cluster of spots, representing various positions of the stellar image as it danced because of atmospheric turbulence. The film is then illuminated by the ordered, single-wave length light of a laser, producing a pattern known as a Fourier transform. The nature of this pattern indicates the width of the light source.

Using the world's most powerful operating telescope, on Mount Palomar, A. Labeyrie has obtained angular widths for about 100 stars, down to magnitude 9 , and to widths of one-tenth of a second of arc. A check of astronomers today revealed a widespread hope that this would eventually become an important tool of their trade.

