

Haverford College
Haverford, Pa. 19041
September 15, 1970
Vr. Paul Hoch
Berkeley Radiation Laboratory
Berkeley, Caiirornia
Dear Paul:
I am writing this letter with a feeling of weariness. Not because the topic isn't interesting, not because you haven't opened up an area of investigation that is fertile, but simply because I find that talking to Alvarez (and you too on these issues) is like taiking to a stone wall. After all the correspondence on the "jiggle theory", a correspondence that finally ended with Alvarez proving unwilling to answer my criticisms, substituting instead an otiose dissertation on the "philosophy of science," arter all this, I find in your report the jiggle theory resurrected in anl its glory (with no mention of any of the objections to it that are apparent to both of us) as a buttress for the single-assassin conclusion. So I rather suspect that any criticisms I make of the new Alvarez theory may quickiy be relegated to the junk heap. Nevertheless, here are the objections.

At ifirst I thought your theory very nice indeed, and as Sylvia Meagher kows, I was going to write you a simple note of congratulation. But as I thought more about the theory, and enlisted the aid of a trained physicistBill Davidon, Chairman of Physics here--the theory became less persuasive. What first set me off was the semingly innocent remark on page 4 of your paper that such retrograde motion "violated our intuitive notions." I began to ask myself why our intuition would lead us to expect the target to fall away from the rifleman. Surely because we had seen objects do that in the past. Our "intuition" is only short-hand for the correlations we make from experience. But had we only seen solid objects shot in the past, and was this a special case--a container filled with liquid? No. For I myself had shot many times into full tin cans and other liquid containers, and they always fell away from the rifleman. When I looked at your report I saw that in an over-all way this was what you had found: water and gelatin-filled containers were "inconclusive" (what does that mean?), toy rubber balls filled with gelatin tended to go away from the rifle (6), normal melons simply exploded-only melons taped with Scotch tape showed the effect you were looking for. Why? As I began to try to figure out for myself how this could happen, I saw first that the experimental object you chose was quite special, and that in really important ways it differed from a human head.

Perhaps unintentionally, throughout your paper you leave vague the precise nature of the dynamical mechanism involved in producing the rebrograde motion. Yet at the beginning of your paper you stress the necessity of identifying this mechanism. As I see it you offer two altemative models for understanding this mechanism:
(1) The "ouliet, as it is slowed down, pulls material from the target along with it, at speeds up to that of the bullet." (4) Surely, you must realize that this is simple nonsense. Given this model, as the bullet tears through material, ripping it from the target, it imparts momentum to the target along the line of plight-mway from the riflemen. This "pulling" efrect (it's you word, not mine) can't possibly produce the petrograde motion because on this model (if you think about it) the momentum transfer to the target is avay from the rifleman.

A "high-momentum forward jet"
You say (7) that "we do not now have a cetailed explanation of how a bullet interacts with a target to produce a high-momentum forward jet: yet at many points in your article (Cf. especially 18 f) you imply an explanation-nemely, that the impact/transit of the bullet on/through the target (a closed cavity containing a liquid-sclid mix) leads to a build-up of pressure in the cavity that vents to atmosphere at first opportunity. Now let's inquire as to how this pressure build-up is brought about. Is it brought about by the tronsit of the bullet through the cavity? As you know, the answer to this question is found in the relationship of the speed of the bullet in the cevityls medium to the speed of sound in that medium. If the speed of the bullet is greater than the speed of sound in the medium, then there is no shock wave and hence no pessure build-up in the cavity. Would you heve any good estimate of the speed of the bullet through JFK's head, or the speed of the bullets you fired through taped melons, or the speed of sound in the interion of a head or in the interior of a melon? I dont, nor would I have any fair estimates what those values would be.

Assuming something that may or may not be true (namely, that the spoed of the bullet in the cavity is greater than the speed of sound in the cavity), the pressure build-up within the cavity must be due not to the transit of the bullet through the cavity, but due to its initial impact on the whole container. I visuelize it in this way: the projectile strikes the melon splititing its surface and bending the surfece inwerd. This effect instantaneously raises the pressure in the cavity which then vents itself in the easiest way.

If the pressure build-up was caused by impact then I can see at least two different reasons for a human head to behave differently under the same circumstances:
(1) The surface of the meion is porous and plexible; the skull. is rigid and dense. If you want to believe the Bethesda autopsy, You heve a tiny entrance hole; if you believe the Parkland doctors you:ve got a massive ext hole-both in the back of the head. Going along with the tiny entrance hole, then the existence of that small hole itself demonstrates that the impact of the bullet did not deform the back of the head, and thus that the impact caused no dramatic pressure rise.
(2) Your melon is a closed container, the head isn't. Pressure build-up in the cranial cavity could be vented dow into the neck tissue by the hole through which the spinal column pokes through into the cranial cavity. A marginal difference, I believe, but still a difference.

Completely apart from these considerations, there is one orucial difference between a skull and a melon that makes me smile in amusement at your Varrenesque statement that "a taped melon is not an unreasonable simulation oi a person's head." Ask yourself how the momentum of a bullet is transferred to a head. Surely, the main quantity of momenturn is transferred as the bullet strikes the surface of the head on entry and exit. The hard bone slows dow the bullet, and conversely this impact inparts to the skull a momentum directed along the bullet's ilight path. Didn't it ever bother you that the resultant retrograde movement of the hoad on your theory must come prom a momentum ractor which is great enough to cvercone this forward imparted momentum and then give the heer a backWeck kick: Your iigures completely ignore this factor. And dion't it ever bother you that your whole experiment is based unon a target where this forward momentum would, by design, be reduced to a minimum?

What yourve done is to design an experinent where all the factors favor an explosive jet and a resultant retrograde motion, and where none of the factors favor the transier of monentum along the line of flight of the bullet, and hence a forward movement. Our intuitions are right for most cases. What you succeeded in doing was to contrive a special case where these intuitions, and the expectations they give rise to, are violated. It remains to be seen whether the JPK instance is aiso a special case assimilable to your model. In some cases a piece of metal will fly upward (namely, when a magnet is held above it) but that doesn't mean I should expect this paper clip before me to jump off the desk. I unge you to try further experiments with animal heads and, if possible, with cadevers' skulls. As it stands, both your experimental work and its theoretical underpinning is incorplete and unconvincing.

Other points I won't get into. I'm weary. Why you believe that most of the impact debris went forward eludes me. And I have other dipficulties with your interpretation of the evidence surrounding the head shot.

Let me know what you think of the above.

Best wishes,
Josiah Thompson

LRetyped copies prepared 9/25/70 for information of other interested critics--Meagher]

